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Abstract
Prediction markets are popular mechanisms for ag-
gregating information about a future event. In situ-
ations where market participants may significantly
influence the outcome, running the prediction mar-
ket could change the incentives of participants in
the process that creates the outcome. We propose
a new game-theoretic model that captures two as-
pects of real-world prediction markets: (1) agents
directly affect the outcome the market is predicting,
(2) some outcome-deciders may not participate in
the market. We show that this game has two types
of equilibria: When some outcome-deciders are
unlikely to participate in the market, equilibrium
prices reveal expected market outcomes conditional
on participants’ private information, whereas when
all outcome-deciders are likely to participate, equi-
libria are collusive – agents effectively coordinate
in an uninformative and untruthful way.

1 Introduction
Prediction markets are widely used tools for aggregating and
disseminating private information on some future event, dis-
persed among a potentially diverse crowd. However, attention
is seldom paid in the literature to the possibility that market
participants might have some degree of control on the out-
come of the forecast event, and hence the presence of a pre-
diction market may make agents affecting the outcome act
differently than they otherwise would. In fact, sometimes it
is this very power to affect outcomes that gives agents the
informational edge that such markets get their value from.

Consider three real-world examples where prediction (or
betting) markets have demonstrated their forecasting abil-
ity: politics [Berg et al., 2008], sporting events [Wolfers and
Zitzewitz, 2004], and software product releases [Cowgill and
Zitzewitz, 2015]. In each of these cases, it is easy to see
how a prediction market may distort outcomes: A congres-
sional staffer or member of congress may know more about
the probable result of a key vote than the general public, but
she is also in a position to influence this result. A referee or
player has substantial ability to influence the outcome of a
sporting event. A software engineer has the potential to delay
(or speed up) the release of a product. When such outcome

manipulation incentives are present, it is natural to ask two
questions: (1) Are the actions of the outcome-deciders still
truthful, i.e. do they take the same actions that they would in
the absence of the prediction market? (2) Are market prices
still informative, i.e. how much do they still tell us about the
realized outcome?

While it is acknowledged that prediction markets have
value as aids in making business and policy decisions, they
have gone through cycles of hype and bust for reasons
that include regulatory concerns about manipulation. The
emblematic anecdote about this problem is the failure of
DARPA’s proposed Policy Analysis Markets which were car-
icatured in the media as “terrorism futures” [Hanson, 2007b;
Stiglitz, July 31 2003]. There are obviously markets that will
not work but stock and futures markets have been used for
a long time as forecasting tools, and prediction markets are
similar in essence. The key is to understand when markets
may be prone to manipulation and how much to trust them.

1.1 Contributions

A model for outcome manipulation: We propose a new
model for studying manipulative behavior that captures two
aspects of real-world prediction markets: (1) agents directly
affect the forecast event, (2) some of the agents who have
influence over the outcome may not participate in the pre-
diction market (e.g. employees who have an impact on the
outcome of a product launch typically would not all take part
in the company’s in-house prediction market for its release
date). In markets where an individual has a small effect on
the outcome, agents’ incentives for manipulation are likely to
be weak. With this in mind, we mainly focus on a two-stage
game-theoretic model of a market with two players, Alice and
Bob, who affect the outcome and can also trade on it (Sec-
tions 2 and 3), and then discuss how our insights extend to
models with more outcome-deciders in Section 4.

In the first stage of the game, Alice and Bob each receive a
private signal about the underlying entity, and then they have
the opportunity to participate sequentially, once each, in a
prediction market mediated by a market scoring rule or MSR
[Hanson, 2007a]. However, depending on his type, there is a
probability that Bob may not participate in trading. In the sec-
ond stage, the two players simultaneously take actions which
we term “votes” for convenience, although in general they



model each participant’s role in determining the outcome.1
The payoffs from the first-stage prediction market are deter-
mined by a simple function of the stage two votes. If Bob has
not traded, his vote is consistent with his private signal, other-
wise he is strategic; the first mover Alice is always strategic.

Our model directly captures the experiments of
Chakraborty et al. [2013] where prediction markets
with student participants were used to forecast the fraction of
“up” (vs “down”) ratings given by students to course instruc-
tors. Moreover, Augur, a recently launched “decentralized,
open-source platform for prediction markets” [Peterson and
Krug, 2015], is a real-world mechanism with manipulation
incentives similar to those in our model: A consensus,
computed from votes cast by participants called “reporters”,
serves as a proxy for the payoff-deciding ground truth of a
market on which these reporters can also wager.
A dichotomy of equilibria: Our main result is that the equi-
libria of our game-theoretic model can be cleanly categorized
into two types, depending on Bob’s probability of participa-
tion in the trading stage. Below a threshold on this probabil-
ity, say p̃ (a function of the MSR used and the signal struc-
ture), we call the equilibrium a low participation probability
equilibrium (LPPE), and above p̃, we call it a high participa-
tion probability equilibrium (HPPE). In a LPPE, Alice essen-
tially predicts Bob’s vote, and then bases her trading on the
optimal combination of her own and Bob’s votes, and the pre-
diction market price is reflective of the expected outcome. In
a HPPE, on the contrary, Alice effectively expects Bob to en-
ter and collude with her, and she chooses a prediction market
price that allows Bob and her to “split the profit”. We summa-
rize the qualitative implications of our result in Section 3.1.

1.2 Related work
The market microstructure we use here is a market scor-
ing rule (MSR), introduced by Hanson [2003] and expanded
upon by many researchers ([Chen and Pennock, 2007; Chen
et al., 2009; Gao et al., 2013] etc.). Incentives for manipu-
lation in prediction markets may arise in a number of ways.
There is a plethora of literature on price manipulation – tam-
pering with the market price owing to some extra-market in-
centives ([Hanson et al., 2006; Rhode and Strumpf, 2006;
Hanson and Oprea, 2009; Boutilier, 2012; Dimitrov and
Sami, 2010; Chen et al., 2011a; Huang and Shoham, 2014]),
e.g. a politically motivated manipulator might make a large
investment in an election prediction market to make one of the
candidates appear stronger [Rothschild and Sethi, 2015]; a re-
lated body of work pertains to decision markets – a collection
of contingent markets set up to predict the outcomes of differ-
ent decisions such that only markets contingent on decisions
that are taken pay off, the rest being voided [Hanson, 1999;
Othman and Sandholm, 2010; Chen et al., 2011b]. The type
of manipulation that we are concerned with is outcome ma-
nipulation where an agent can take an action that partially

1For example, for a product release date prediction market, a (bi-
nary) private signal could stand for whether an agent knows / be-
lieves she is capable of contributing her share in making sure that
the launch is on time; her (binary) vote in this case would indicate
whether she actually plays her part honestly.

influences the outcome to be predicted (e.g. [Berg and Rietz,
2006; Shi et al., 2009]), and we study it in a new model.

The second major body of related literature comes from
theoretical finance and market microstructure. Kyle [1985],
followed by Holden and Subrahmanyam [1992], Foster and
Viswanathan [1996] etc., studied the effect of informed “in-
sider(s)” on market price; Glosten and Milgrom [1985] pre-
sented another view of how asymmetric information affects
price formation, and their model has been adapted for mar-
ket making in prediction markets [Das, 2008; Brahma et
al., 2012]. Ostrovsky [2012] recently examined information
aggregation with differentially informed traders under both
Kyle’s pricing model and market scoring rules. Again, in all
of these models, the market outcome is assumed to be exoge-
nously determined, unlike in ours.

2 Model and definitions
Let τ ∈ T denote the unobservable “true value” of the ran-
dom variable on which the voting system and its associated
prediction market are predicated. At t = 0, the two agents,
Alice and Bob (A and B in subscripts), receive private sig-
nals sA, sB ∈ Ω = {0, 1} respectively. The signal structure,
comprising the prior distribution Pr(τ) on the true value and
the conditional joint distribution Pr(sA, sB |τ) of the private
signals given the true value, is common knowledge.

Let q0(·) denote Alice’s posterior probability that Bob re-
ceived the signal sB = 0, given her own signal and common
knowledge, i.e. q0(s) , Pr (sB = 0|sA = s) ∀s ∈ {0, 1}.
We ignore the uninteresting special cases q0 ∈ {0, 1} cor-
responding to Alice having no uncertainty about her peer’s
private signal. Although we need no further assumptions on
the signal structure for our main result (Theorem 1), it is
worthwhile to define here the property of stochastic relevance
[Miller et al., 2005] which is a necessary assumption for one
of our important corollaries.

Definition 1. For binary random variables si, sj ∈ {0, 1},
sj is said to be stochastically relevant for si if and only if the
posterior distribution of si given sj is different for different
realizations of sj , i.e. if and only if Pr(si = 0|sj = 0) 6=
Pr(si = 0|sj = 1).

We now describe the rules of the two-stage game compris-
ing the market and voting mechanisms. We will call this the
trading-voting game.
Stage 1 (market stage): The market price at any time-step
t is public, the starting price at t = 0 being p0 which is the
market designer’s baseline estimate of the outcome (equal to
the final gross payoff per unit of the security).

The prediction market is implemented using a market scor-
ing rule (MSR) [Hanson, 2007a] with the underlying strictly
proper scoring rule s(r, ω), where ω is the outcome to be
forecast – in our model, determined by Stage 2 (see below) –
and r is an agent’s forecast / report on it; strict propriety, by
definition, implies that if a forecaster is promised an ex post
compensation of s(r, ω), then the only way she can maximize
her subjective expected compensation is by reporting her ex-
pectation of the random variable ω. For a clean analysis, we
shall focus on strictly proper rules for eliciting the expectation



of the random variable ω ∈ [0, 1], satisfying some regular-
ity and smoothness conditions [Gneiting and Raftery, 2007;
Abernethy and Frongillo, 2012]:

s(r, ω) = f(r) + f ′(r)(ω − r), ω, r ∈ [0, 1] (1)

where f(·) is a continuous, finite, strictly convex function on
[0, 1]; its first derivative f ′(·) is continuous, monotonically
increasing, and finite on [0, 1] except possibly that f ′(0) =
−∞ or f ′(1) =∞, with limr→0 f

′(r)r = limr→1 f
′(r)(1−

r) = 0; the second derivative f ′′(·) is positive on [0, 1] and
finite in (0, 1). Additionally, we need the function to have the
following symmetry:

f( 1+y
2 )− f( 1−y

2 ) = yf ′( 1
2 ) ∀y ∈ [0, 1]. (2)

Henceforth, we shall refer to (market) scoring rules pos-
sessing all the above properties as symmetric well-behaved
(market) scoring rules. This covers a large family of MSRs
including three of the most widely used and studied – the log-
arithmic (LMSR), quadratic (QMSR), and spherical (SMSR)
varieties, respectively defined as:

LMSR: s(r, ω) = ω ln r + (1− ω) ln(1− r),
QMSR: s(r, ω) = ω2 − (ω − r)2,

SMSR: s(r, ω) = (rω + (1− r)(1− ω)) /
√
r2 + (1− r)2.

At t = 1, Alice interacts with the market maker and
changes the price to pA. At t = 2, Bob has an opportunity
to trade but may not show up with a (common-knowledge)
probability π ∈ [0, 1] called Bob’s non-participation proba-
bility; if he does trade, he changes the price to pB . Regardless
of whether Bob trades, the market terminates after t = 2.
Stage 2 (voting stage): In this stage, Alice and Bob simul-
taneously declare their “votes” vA, vB ∈ Ω = {0, 1} respec-
tively. Taking part in Stage 2 is mandatory for both agents.
We define truthful voting as declaring one’s private signal as
one’s vote, i.e. vk = sk, k ∈ {A,B}. We assume that, if
Bob did not trade in Stage 1, he votes truthfully, and we call
such a Bob HONEST. Any agent participating in the predic-
tion market is Bayesian, strategic, and risk-neutral. Hence, if
Bob trades, we refer to him as STRATEGIC Bob.

The market outcome is given by the average vote v =
(vA + vB) /2 ∈ {0, 12 , 1}. Alice and Bob’s ex post net pay-
offs of are respectively

Ri(pi, pj , vA, vB) = s
(
pi,

vA+vB
2

)
− s

(
pj ,

vA+vB
2

)
, (3)

where i ∈ {A,B}, j = 0 for i = A, j = A for i = B.
Bob does not strategically decide whether to take part in the

market, it is determined extraneously – the proclivity to trade
can be viewed as one of the components of Bob’s type, the
other being his private signal sB . Here, HONEST Bob models
agents whose outcome-deciding actions remain unaltered by
the introduction of the prediction market.

3 Equilibrium analysis
The solution concept we use for the trading-voting game
described in Section 2 is the perfect Bayesian equilibrium
(PBE), a refinement of Nash equilibria for Bayesian games
[Fudenberg and Tirole, 1991]. In this section, we present the

main theorem, its supporting lemmas and main corollaries,
and defer full proofs to a longer version of the paper.

Our first result formalizes the intuition that, if Alice pulls
the market price down (resp. up) from its initial value, she
is “forecasting” that the final outcome will be lower (resp.
higher) than the market’s initial estimate and hence it is in
her best interest to do everything in her power to ensure a low
(resp. high) average vote – this is because her payoff is higher
for a prediction closer to the realized outcome.

Lemma 1. For the trading-voting game described in Sec-
tion 2, if the prediction market has a starting price p0 ∈ (0, 1)
at t = 0, and (pA, vA) denotes Alice’s combined action in the
two-stage game, i.e. her report-vote pair, then

• for any pA < p0, (pA, 0) strictly dominates (pA, 1);

• for any pA > p0, (pA, 1) strictly dominates (pA, 0); and

• she is indifferent between the actions (p0, 0) and (p0, 1).

This result holds regardless of Bob’s report-vote pair
(pB , vB).

Lemma 1 implies that immediately after Alice has traded,
anyone can infer that vA = 0 deterministically if pA < p0,
vA = 1 deterministically if pA > p0, and that she is equally
likely to vote 0 or 1 if pA = p0, which is equivalent to not
trading with the market maker. As soon as STRATEGIC Bob
arrives to trade, he acquires all the information relevant to his
decision making procedure that the rules of the game allow
him to have (pA and vA). Thus, STRATEGIC Bob makes his
trading and voting decisions (pB , vB) simultaneously.

The next step is to determine Bob’s best response to Alice’s
Stage 1 action. For this, we need to define quantities that we
call the lower and upper thresholds pL and pH :

pL , (f ′)−1(2 (f(1/2)− f(0))) ∈ (0, 1/2),

pH , (f ′)−1(2 (f(1)− f(1/2))) ∈ (1/2, 1).

For any symmetric, well-behaved scoring rule, we can
show that pH = 1 − pL. For LMSR, QMSR, and SMSR,
pL is 0.2, 0.25, and 0.2725 respectively.

Lemma 2. For the trading-voting game described in Sec-
tion 2, where the market is implemented with a symmet-
ric well-behaved market scoring rule with lower and upper
thresholds pL, pH , and has a starting price p0 ∈ (0, 1),

• if pA < p0, then STRATEGIC Bob’s best-response vote is
vB = 1 (resp. vB = 0) if pA < pL (resp. pA > pL) but
he is indifferent between the two possible voting choices
if pA = pL; his accompanying price-report is pB = vB

2 ;

• if pA > p0, then STRATEGIC Bob’s best-response vote is
vB = 1 (resp. vB = 0) if pA < pH (resp. pA > pH ) but
he is indifferent between the two possible voting choices
if pA = pH ; his accompanying pB is 1+vB

2 ;

• if pA = p0, then STRATEGIC Bob’s best-response vote is
vB = 0 (resp. vB = 1) if p0 > 1/2 (resp. p0 < 1/2)
but he is indifferent if p0 = 1/2, and his accompanying
price-report is pB = 1/2+vB

2 .

This result is independent of Bob’s private signal sB .



pL, pH , and p0 are points of transition in agent behav-
ior: Bob’s best response is to “disagree with” Alice’s voting
choice (revealed through pA) in Stage 2 if Alice’s price-report
lies in either of the “outer” sub-intervals [0,min(p0, p

L))
or (max(p0, p

H), 1], and to “agree with” her otherwise; for
pA 6= p0, STRATEGIC Bob knows what the market outcome
v is going to be, so he can make a perfect forecast pB = v.

This fully characterizes how the game unfolds after Alice
has taken her Stage 1 action. Now, the final step towards
completing the equilibrium specification is to figure out Al-
ice’s best-response price-report pA, based on q0, π, and her
knowledge of Lemmas 1 and 2. In the extreme case π = 0,
when Bob’s (strategic) participation is certain, it is natural
to conjecture that Alice as the first mover will invite Bob to
create a “fake world” with little connection to their private
signals; at the other end of the spectrum (π = 1) where Al-
ice is sure that Bob is HONEST, we expect her action to shed
some light on her posterior belief about Bob’s signal. The-
orem 1 tells us that there exists some critical value of Bob’s
non-participation probability at which a switch between par-
tially revealing and collusive equilibria occur.2

Theorem 1. For any value of Bob’s non-participation prob-
ability π ∈ (0, 1) and Alice’s posterior belief q0 ∈ (0, 1),
the trading-voting game described in Section 2 has a perfect
Bayesian equilibrium with the following attributes: For ev-
ery q0, there exists a fixed value of Bob’s non-participation
probability, say πc(q0), which we call the “crossover” prob-
ability (dependent on the MSR), on either side of which the
equilibria are qualitatively different. We call the sub-interval
π < πc the high participation probability (HPP) equilibrium
domain, and the sub-interval π > πc the low participation
probability (LPP) equilibrium domain.
• In a HPP equilibrium:
– In Stage 1, Alice moves the market price to pA = pL if
q0 >

1
2 , and to pA = pH if q0 < 1

2 ; STRATEGIC Bob’s price-
update is pB = 0 if pA = pL, and pB = 1 if pA = pH .
– In Stage 2, Alice votes vA = 0 if she set pA = pL, vA = 1
if pA = pH ; STRATEGIC Bob votes vB = 0 if he set pB = 0,
and vB = 1 if he set pB = 1.
• In a LPP equilibrium:
– In Stage 1, Alice’s price-report pLPPA is equal to her pos-
terior expectation of the market liquidation value (average
vote) given the parameters π, q0 and her report pLPPA , i.e.
pLPPA = E

[
v|π, q0, pA = pLPPA

]
. Moreover, pLPPA < 1

2 if
q0 > 1

2 , pLPPA > 1
2 if q0 < 1

2 . STRATEGIC Bob’s price-
update is pB = 0 if pL ≤ pA ≤ 1

2 , pB = 1 if 1
2 < pA ≤ pH ,

and pB = 1
2 otherwise.

– In Stage 2, Alice votes vA = 0 if pA > 1
2 , vA = 1 if pA <

1
2 ; STRATEGIC Bob votes vB = 0 if pA ∈

[
pL, 12

]
∪
(
pH , 1

]
,

vB = 1 otherwise.

More specifically, pLPPA is one of µ0,0 = π(1−q0)
2 , µ0,1 =

1−πq0
2 , µ1,0 = 1+π(1−q0)

2 , µ1,1 = 1− πq0
2 , where 0 < µ0,0 <

µ0,1 <
1
2 < µ1,0 < µ1,1 < 1. Table 1 presents the crossover

2We present our results for p0 = 1
2

, which corresponds to start-
ing the market at a uniform “prior” – a standard practice in prediction
markets.

q0
πc(q0) pPBEA for LPP

pL < 1
4 pL ≥ 1

4 pL < 1
4 pL ≥ 1

4

0 < q0 < 2pL π∗1(q0) π∗1(q0) µ1,0 µ1,0

q0 = 2pL 1 π∗1(q0) NA µ1,0

2pL < q0 <
1
2

2pL

q0
π∗1(q0) µ1,1 µ1,0

q0 = 1
2 4pL π∗

µ1,1 /
µ0,0

µ1,0

Table 1: The crossover probability πc and as a function of q0
over the sub-intervals into which pL splits the entire possible
range (0, 1) of q0, for symmetric well-behaved MSRs. NA
indicates that the LPP domain is never attained for that q0.
LMSR is an example with pL < 1/4, QMSR with pL =
1/4 and SMSR with pL > 1/4. π∗1(q0) is the unique root
in (0, 1) of the following equation in π: f(µ1,0) − f(pH) −(
µ1,1 − pH

)
f ′(pH) +

(
1−π
2

)
f ′( 1

2 ) = 0; π∗ is 1 for pL =

1/4, and for pL > 1/4, it is the unique root of f( 1
2 −

π
4 ) −

f(pL)−
(
π
4 − p

L
)
f ′(pL)−

(
1−π
2

)
f ′( 1

2 ) = 0.

probability πc as a function of q0 for sub-classes of symmetric
well-behaved MSRs defined on the basis of the value of pL,
and also the values of Alice’s equilibrium price-reports in the
LPP domain, for q0 ≤ 1/2. For q0 > 1/2, the results are
symmetric, hence omitted. In the HPP domain, pPBEA is pH

whenever q0 < 1/2, and pL whenever q0 > 1/2. At π =
πc, then Alice is indifferent between her LPP and HPP price-
reports although the values of these reports are, in general,
distinct. Below, we outline the proof of Theorem 1.

Proof sketch Owing to linearity, Alice’s expected pay-
off with respect to her uncertainty in Bob’s participation
and signal is equal to her payoff function evaluated at
the her expected outcome. Hence, we can show that this
expected payoff function is a piecewise continuous func-
tion of pA consisting of segments of the “component”
functionsRA(pA,

1
2 , 0, 1),RA(pA,

1
2 , 0, 0),RA(pA,

1
2 , 1, 1),

and RA(pA,
1
2 , 1, 0) over the sub-intervals (0, pL), (pL, 12 ],

( 1
2 , p

H), (pH , 1) respectively, with jump discontinuities at
pL, pH . The global maxima of these components in [0, 1]
are located respectively at µ0,1, µ0,0, µ1,1, and µ1,0, which
depend on π and q0. However, for any given q0 (and pL, pH ),
depending on the value of π, the global maximum of one of
these components might lie outside the sub-interval in which
the components is applicable so that the local suprema of
some of the segments may lie at a threshold pL or pH . Taking
these issues into account, we can determine the local suprema
of the four segments and compare them to find the pA max-
imizing Alice’s expected payoff; the rest of the theorem fol-
lows from Lemmas 1 and 2, with the restriction that vB = 0
if pA = pL and vB = 1 if pA = pH . �

Figure 1 depicts the crossover probability πc as a function
of q0 for each of the three selected MSRs. An interesting
point is that for LMSR, when 0.4 < q0 < 0.6, which is a
region of “high” uncertainty in Alice’s posterior about Bob’s
private signal, πc actually decreases with Alice’s increasing
uncertainty, i.e. the partially revealing LPP domain is realized



for lower values of Bob’s non-participation probability than
for the other MSRs. This is a peculiarity of any MSR with
pL < 1/4 as opposed those with pL ≥ 1/4.

3.1 Implications
Private signal revelation: STRATEGIC Bob’s report-vote
pair is fully determined by Alice’s report and does not de-
pend on sB ; there is no guarantee that Alice’s vote will be
truthful either, even in a LPP equilibrium (in general, she is
likely to guess which way Bob will vote and vote the same
way). However, if we invoke the assumption of stochastic
relevance (Definition 1), then we can use pA to uncover sA.

Corollary 1. If Alice’s signal sA is stochastically relevant
for Bob’s signal sB , then the value of sA can be recov-
ered from Alice’s price-report in a LPP equlibrium pLPPA =
µu,v(π, q0), u, v ∈ {0, 1}, regardless of whether vA = sA.

In other words, the very possibility of Bob not trading
but voting truthfully engenders a situation (LPP domain) in
which Alice, though strategic, is forced to indirectly divulge
her private information! This has major implications for the
value of prediction markets in situations where the “voting”
or outcome-deciding actions of individuals are already as-
sumed to be truthful and the designer would prefer not to
introduce incentives that make them untruthful just because
they added a trading platform. Corollary 1 suggests that, for
an MSR-based prediction market, manipulators run the risk of
having their cover blown when some fraction of the outcome-
deciders refrain from market participation and are truthful in
their outcome-affecting actions.

In a HPP equilibrium, pA can only tell us whether q0 > 1
2

(if pA = pL) or q0 < 1
2 (if pA = pH ), and is insufficient for

recovering sA without further assumptions.
HPP profit sharing: The HPP equilibria are a world where
collusion appears with Alice as the “leader” picking the vote
that both will coordinate on, and moving the price to just the
level where it makes sense for STRATEGIC Bob to push the
price all the way to 0 or 1 and vote the same way as Alice.
In this way, they extract the maximum profit from the mar-
ket maker, and split it between the two of them in a ratio that
is dependent on the functional form of the MSR. In particu-
lar, for the three major MSRs considered, Alice makes more
profit than Bob in a collusive equilibrium, with the discrep-
ancy being the least for LMSR – we omit the straightforward
calculations, and present the results in the following table:

Share in total HPP profit
if Bob is STRATEGIC

LMSR QMSR SMSR

Alice’s share 67.81% 75% 78.32%
Bob’s share 32.19% 25% 21.68%

Corollary 2. In a trading-voting game where the prediction
market is implemented by any symmetric well-behaved MSR
with lower threshold pL ≥ 1

4 , Alice’s ex post net profit in a
HPP equilibrium is greater than that of STRATEGIC Bob.

If Bob is HONEST, Alice’s payoff is obviously a function
of his private signal faithfully announced in the outcome-
deciding voting stage. Corollary 2 tells us that, even if Bob is
STRATEGIC and hence ends up colluding with the manipula-
tor Alice, her profit share in a collusive equilibrium depends
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Figure 2: Crossover from HPP to LPP equilibria regions for
LMSR over 0 < π < 1 for a particular instantiation of the
signal structure described in Section 3.2.

strongly on the MSR used – an insight that can potentially
inform the choice of an MSR for market design.
Informativeness of market prices about final outcome: Fi-
nally, we can put all our results together into the following ta-
ble (recall that the final price pB = pA for HONEST Bob, and
pB = v for STRATEGIC Bob), where “Bayes. Est.” (Bayesian
estimate) is Alice’s expectation of the average vote before
Bob trades; “Pre.” (Predetermined) signifies pA ∈ {pL, pH};
“Correct” denotes the actual outcome.

STRATEGIC Bob HONEST Bob
LPP HPP LPP HPP

pA Bayes. Est. Pre. Bayes. Est. Pre.
pB Correct Correct Bayes. Est. Pre.

3.2 A specific signal structure
We now consider a concrete example scenario to illustrate our
findings: The underlying random variable takes values in the
signal space itself, i.e. T = Ω = {0, 1}, the prior probabil-
ity of τ = 0 being ρ0 ∈ (0, 1). Given τ , the agents’ signals
are independently and identically distributed: for any “true”
τ ∈ {0, 1}, each participant gets the “correct” signal (iden-
tical to the true τ ) with probability (1− ρe), otherwise gets
the wrong signal; the error probability ρe ∈ (0, 1)\{ 12}. Note
that if and only if ρe = 1

2 , we have q0(0) = q0(1) = 1
2

regardless of ρ0, hence signals are not informative [Chen et
al., 2009]. Then, q0(0) =

(1−ρe)2ρ0+ρ2e(1−ρ0)
(1−ρe)ρ0+ρe(1−ρ0) , and q0(1) =

(1−ρe)ρe
ρeρ0+(1−ρe)(1−ρ0) . This signal structure has multiple inter-
esting information-revealing characteristics: First, we have
q0(0) 6= q0(1), i.e. Alice’s signal is stochastically relevant
for that of Bob. Hence, Corollary 1 applies. Second, it is
easy to show that, if ρ0 = 1

2 (a uniform common prior),
then Alice’s vote is always truthful since, for any ρe ∈ (0, 1),
sA = 0⇔ q0 >

1
2 ⇔ vA = 0.

Figure 2 shows Alice’s equilibrium report in a LMSR mar-
ket and her expected market outcome vs. π, for sA = 0 and
fixed ρ0, ρe (hence, a fixed q0). Note the HPP and LPP re-
gions to the left and right of the cross-over probability, where
Alice’s price-report (the dashed curve) is distinct from and
coincides with her expectation of the average vote (the con-
tinuous curve) respectively. The corresponding plots for the
other two MSRs are qualitatively similar.
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Figure 1: Dependence of crossover probability on Alice’s posterior belief about Bob for the three MSRs; e.g. for QMSR, if
q0 = 0.25. then πc ≈ 0.9537, so we have a LPP equilibrium with pA = (1 + π(1 − q0))/2 for π > 0.9537, and a HPP
equilibrium with pA = pH = 0.75 for π < 0.9537.

4 Discussion
Our model is stylized, but the framework and methodology
can be applied to more complex scenarios. Below, we sketch
two specific lines of generalization.
Additional outcome-deciders who do not trade: Consider
a scenario in which Alice and Bob are the only traders but
jointly decide less than 100% of the outcome, say, v =
vA+vB+

∑n
i=1 vi

n+2 , where {vi}ni=1 are the votes (and also the
private signals) of n non-strategic agents. To solve for equi-
libria, we now need, in addition to Bob’s non-participation
probability π and Alice’s posterior belief about others’ sig-
nals given sA, Bob’s posterior belief given sB and Alice’s
trading action; but we can use the same methodology as in
Section 3 to show that the PBE is still of two types (with some
additional characteristics) depending on model parameters.
For example, if all agents receive independent and identically
distributed signals conditional on the type of the underlying
entity, and the signal structure is such that vA = 0 if and only
if sA = 0 (as in Section 3.2), then the main deviation from
the analysis in Section 3 is that Bob’s thresholds pL and pH
now become functions of sB ∈ {0, 1} so that each has two
possible values. For a low enough π, Alice’s best response is
to set pA at an uninformative value (pLsB=0, pLsB=1, pHsB=0, or
pHsB=1) but now STRATEGIC Bob decides whether or not to
“agree with” Alice depending on sB , hence this equilibrium
reveals Bob’s signal; for a high enough π, pA coincides with
Alice’s expected outcome but now her action fully determines
STRATEGIC Bob’s action, so Bob’s signal cannot be inferred
from his action, as in the two-player game; in either case,
STRATEGIC Bob moves the price to his posterior expectation
of v, which is no longer in {0, 1}.
Additional traders who do not affect the outcome: Agents
with no control over the outcome who trade before Alice only
matter in the level to which they move the price seen by Alice
but, from Alice’s perspective, this is equivalent to a ‘starting’
price of a general p0 ∈ (0, 1); if they all trade after Bob,
Alice and Bob’s equilibrium actions remain unchanged be-
cause, in an MSR, an agent’s payoff depends on the actions
of her predecessors and not on those of her successors, by de-
sign (as long as these successors are not outcome-deciders).
The game becomes more complex for Alice when there are

intermediate traders between Alice and Bob, but we believe
that our model can serve as a foundation for analyzing this
extension as well.

5 Conclusion
This paper is a first step in exploring the crucial incentive is-
sues that have the potential to derail the effectiveness of pre-
diction markets for various forecasting tasks. We have intro-
duced a new formal model for studying the incentives for and
the impact of manipulation in prediction markets whose par-
ticipants can affect the outcome by taking actions external to
the market but there is some uncertainty about the market par-
ticipation of some outcome-deciders. We have characterized
the equilibria of the induced game, discussed their proper-
ties, and outlined important extensions. Interesting avenues
for future work include generalizing our results to markets
with other price-setting mechanisms, richer signal structures,
outcome functions other than the mean vote (such as non-
linear and / or noisy functions of the agents’ second-stage ac-
tions), and agents who also strategically pick the time-points
at which they trade.
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